Rysunki utworzono za pomocą programu C.a.R. Można przesuwać suwaki i 'wypełnione' punkty.
Kwadrat w trójkącie zazwyczaj spotykamy w położeniu takim, jak na poniższym rysunku. Jego jeden bok jest zawarty w jednym boku trójkąta, a pozostałe dwa wierzchołki leżą na pozostałych dwóch bokach trójkąta.
Można łatwo wyznaczyć długość x boku takiego kwadratu leżącego w trójkącie równobocznym o boku a.
Wskazówka 1. Wystarczy zapisać podobieństwo trójkątów ABC i LMC.
Wskazówka 2. Niech h oznacza wysokość trójkąta ABC opuszczoną z C.
Jaka jest wysokość trójkąta LMC opuszczona z C?
Odpowiedź.
x = ah / (a+h) = ...
= a(2 - 3) .
Trudniejszym zadaniem jest wyznaczenie tak położonego kwadratu. Podaj konstrukcję kwadratu leżącego w trójkącie w opisany wyżej sposób.
Odpowiedź.
Przedstawimy nietypową konstrukcję.
Uczniowie mogą jednak zadać
Kłopotliwe pytanie 1. Czy kwadrat leżący w ten sposób w trójkącie równobocznym jest największym z kwadratów w nim zawartych?
Odpowiedź?
Poniższe rozumowanie pokazuje, że jeśli prostokąt KLMN leży w (dowolnym) trójkącie ABC tak, że żaden z boków nie zawiera się w obwodzie trójkąta, to ten prostokąt nie jest największym z możliwych.
Można prostokąt KLMN nieco obrócić wokół punktu S
(będącego przecięciem prostopadłych do boków w punktach K i L). Po takim małym obrocie w odpowiednią stronę (w którą? od czego to zależy?) wszystkie wierzchołki leżą we wnętrzu trójkąta.
Zatem ten obrócony prostokąt K'L'M'N' można jeszcze nieco powiększyć w obrębie trójkąta.
Powyższe rozumowanie dawałoby kompletne uzasadnienie pozytywnej odpowiedzi na kłopotliwe pytanie 1, gdybyśmy wiedzieli, że
wśród kwadratów zawartych w danym trójkącie
istnieje kwadrat o największym boku.
Pojęcie zwartości poznawane na studiach matematycznych daje krótką argumentację. Ale jak to opowiedzieć w szkole?
Trudna sprawa, kłopotliwe pytanie.
(Nie roztrząsam tutaj tego problemu. Gdy uczeń tak zapyta, odpowiem mu... na przerwie.)
Kłopotliwe pytanie 2. Czy w każdym trójkącie największy kwadrat w nim zawarty ma wszystkie wierzchołki leżące na obwodzie trójkąta?
Wskazówka
Nie.
Odpowiedź
Patrz.
Kłopotliwe pytanie 3. Czy kwadrat leżący w opisany wyżej sposób w trójkącie równobocznym ma największe pole spośród wszystkich prostokątów zawartych w tym trójkącie?
Miesięcznik "Delta" wydawany przez Wydział Matematyki Informatyki i Mechaniki Uniwersytetu Warszaw-skiego został finalistą jubileuszowej XX edycji konkursu na Popularyzatora Nauki w kategorii "Media". Konkurs organizuje serwis PAP "Nauka w Polsce". Zwycięzcy będą ogłoszeni w grudniu.
Tradycyjnie w grudniu rozgrywane są finały konkursu matematycznego KOMA. Eliminacje dotyczyły w tym roku numerycznych reprezentacji grafów. A co będzie tematem finałów?
Mikołaj na magicznych saniach zaprzężonych w renifery pokonuje 300 km w ciągu pół godziny. Ile czasu zajmie mu przebycie 1000 km, jeśli renifery utrzymają stałe tempo jazdy?